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Abstract

We present a computational analysis of viscous flow across unidirectional arrays of fiber bundles using
the boundary element method (BEM). We consider hexagonal arrays of fiber bundles in which the indi-
vidual filaments are packed in hexagonal or square arrangements. Up to 300 individual filaments are in-
cluded in each simulation. These are simple but not trivial models for dual porosity fibrous media (such as
the preforms used in composites manufacturing or fiber bundles used in hollow membrane oxygenators)
characterized by different inter- and intra-tow porosities. The way these porosities interact to determine the
hydraulic permeability of such media is not well understood. Numerical solution of the flow problem yields
the flowrate through the unit cell, from which the hydraulic permeability (K}) of the dual porosity medium
is computed. Through a large number of simulations we determine K|, for a range of inter- and intra-tow
porosities and for a range of fiber sizes. A semi-empirical correlation is proposed which collapses all the
numerical data (a total of 380 data points) on a single curve, for both, hexagonal and square intra-tow fiber
arrangements. This correlation allows prediction of the permeability of hexagonal arrays of fiber bundles
from a knowledge of their inter- and intra-tow porosities, the type of intra-tow packing and the size (or
number) of the intra-tow filaments. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fibrous porous media are usually idealized as made up of cylinders arranged in space in a defined
periodic order. In such arrangements, a unit cell can be identified and its permeability calculated by
solution of the pertinent flow equations, usually in the limits of small and large porosities (Bruschke
and Advani, 1993; Sangani and Acrivos, 1982; Gebart, 1992; Drummond and Tahir, 1984;
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Nagelhout et al., 1995). However, there are several cases in engineering, in which fibers are used in
the form of bundles rather than as individual filaments. A notable example is the case of the fibrous
preforms used in composites fabrication. In such preforms fibers are typically bundled together in
tows, separated by fairly large gaps which facilitate resin flow during the saturation process. The
porosity of these tows is invariably different from the ““macroscopic’ porosity of the system. Arrays
of fiber bundles are classical dual-porosity media, characterized by their inter- (gaps between tows)
and intra-tow (void space within a tow) porosities. The manner in which these interact to determine
the flow through and the permeability of such fibrous media is not well understood, even though
several studies have dealt theoretically with this problem (Parnas and Phelan, 1991; Pillai and
Advani, 1995; Phelan and Wise, 1996; Ranganathan et al., 1996). In earlier work (Papathanasiou,
1996, 1997) we had presented the results of a computational study of Stokes flow across square
arrays of fiber clusters containing relatively small number of filaments. Each cluster was made up of
uniform fibers arranged in square packing. The hydraulic permeability of these systems was
calculated from Darcy’s Law (Darcy, 1856) following the numerical solution of Stokes’ equations
in the corresponding unit cell. It was found that the numerically computed permeabilities
followed a correlation of the form K,/K; — 1 = ay?, where (y) is an effective intra-tow porosity
(z=1—=(1—=¢)/(1 = ) o, p were found to be functions of the inter-tow porosity.

The main limitation of this study was the small number of fibers considered in each simulation
and the fact that the effect of the fiber size was not investigated. Furthermore, a square ar-
rangement of tows and of intra-tow fibers is not very realistic, as fibers and tows tend to assume
positions closer to hexagonal packing as a result of external or hydrodynamic forces. The present
communication extends these computations to hexagonal packing of the bundles (tows) and of the
intra-tow fibers. The arrangements studied are indicated as hex—hex (HH) and hex—square (HS)
(the first part of these terms corresponds to the inter- and the second to the intra-tow packing; for
example, Fig. 1(a) refers to the HS unit cell). Much larger number of fibers (up to 300 in each
bundle) have been considered in this study and therefore the computed permeabilities are not
significantly affected by the shape of the tow-fluid interface (which, for the square packing of tows
and the small fiber numbers used in earlier work (Papathanasiou, 1997) can be a problem at lower
¢;). The effect of the number of fibers making up each bundle is further illustrated. The principal
advantage of this approach is that the structure of the interior of a tow is explicitly included in the
simulation and reflected in the computed permeabilities; no assumption needs to be made about
tow homogeneity, tow permeability or about the nature of the flow in the interior of the tow and
at the tow/fluid interface. Our objective is to derive quantitative relations between primary,
measurable variables (such as inter- and intra-tow porosities and the size (or number) of fibers
making up each tow) and the permeability of such arrays of fiber bundles. The computational
results are presented in a form deduced from the theoretical work of Ranganathan et al. (1996).
Based on this representation we construct a master curve for the permeability of hexagonal arrays
of fiber bundles for square and hexagonal intra-tow packing.

2. Model systems

We consider systems made up of infinitely long cylindrical bundles arranged in an hexagonal
packing and with their axes perpendicular to the direction of flow. Each bundle consists of a
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Fig. 1. The unit cell used in the HS arrangement. (a) Hexagonal packing of tows and square intra-tow packing of
filaments. (b) Typical velocity profile along the line (AB).
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number (Ny) of solid cylindrical filaments of radius R¢. These filaments are arranged in square or
hexagonal packing within the bundle. Figs. 1 and 2 show typical unit cells corresponding to the
two types of packing. We investigate the regions of small-to-moderate values of inter-tow (¢;) and
moderate-to-high values of intra-tow (¢,) porosities (at low values of ¢, practically no fluid passes
through the bundle which behaves effectively as an impermeable entity).

It is obvious that the overall permeability (K,) of such a dual porosity system will be determined
by the amount of fluid passing through the inter- and intra-tow regions. The latter is related to the
permeability of the tow itself (K, a function of ¢,) while the former should be related to the
permeability of a system with the same inter-tow porosity but made up of impermeable tows. The
permeability of this system is indicated as (K;) and is only a function of ¢;. These unit cells are
fully characterized when the type of inter- and intra-tow packing, as well as the inter- and intra-
tow porosities (¢; and ¢,) and either R; or N; are known. The intra-tow porosity and either R; or
N; are the geometrical parameters that determine (Kiy). (K) is determined by the inter-tow
porosity and the tow radius (Ry).

In any unit cell the permeability can be calculated from the flowrate (Q) through the cell
(obtained by integration of the velocity profile along the inlet or outlet boundaries) and the
corresponding pressure drop (AP), using Darcy’s law K = (Q/H)(Lu/AP). (H) and (L) are the
height and length of the unit cell. The velocity profile is obtained by solving the pertinent flow
problem (Stokes flow in our case). We use the boundary element method (BEM) for this
purpose. Use of the BEM in solving Stokes flow problems is well documented (Brebbia and
Dominquez, 1992). In brief, the equations solved are the Stokes equations for two-dimensional
flow:
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Fig. 2. The geometry and unit cell corresponding to the HH arrangement. Hexagonal packing of tows and hexagonal
intra-tow packing of filaments.
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where (#) and (v) are the components of the velocity vector in the (x) and (y) directions, respec-
tively, of the Cartesian coordinate system. The boundary conditions are: no-slip (# = v = 0)
conditions on the surface of the fibers, prescribed pressure drop between the inflow and outflow
boundaries in the direction of bulk flow, and symmetry conditions on the fluid segments of the
upper and lower boundaries. The numerical algorithm was coded to run on a 4-CPU server; this
offered approximately a 2-time speedup as compared to running on a conventional single processor
PC. An example of the velocity profile obtained in the HS arrangement is shown in Fig. 1(b). Even
though as a result of the boundary conditions specifying the unit cell the velocity profile on the
inflow and outflow boundaries is one-dimensional, the problem solved is a two-dimensional one
and the complete flow distribution in the interior of the flow domain can be readily obtained from
the boundary solution using Somigliana’s identity (Brebbia and Dominquez, 1992).

3. Results and discussion
3.1. The permeability of hex—hex (HH) and hex—square (HS) arrays

A large number of simulations were carried out in HH and HS unit cells (Figs. 1 and 2). The
parameters which varied were the inter-tow porosity (¢;), the intra-tow porosity (¢,) and the fiber
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radius (Ry). The results are plotted in terms of the intrinsic permeability (Ki, = K, /Ks — 1) vs. the

effective intra-tow porosity (y)

L= 1 _(1 —(,15,)/(1 _d)max)

(3)

in Figs. 3 and 4. A total of 231 data points are included in Fig. 3, corresponding to ¢; =0.10, 0.12,

0.125, 0.15, 0.20 and 0.30. ¢, 1s 0.50, 0.55, 0.6, 0.65, 0.70, 0.75, 0.8, 0.85,

0.9. The results from the
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Fig. 3. Numerical results for the intrinsic permeability (Ki, = K,/K; — 1) of HH arrays plotted on a log-log scale against

the effective intra-tow porosity (x) (x = (1 — ¢,)/(1 — Ppan)-
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Fig. 4. Numerical results for the intrinsic permeability (Ki, = K,/K; — 1) of HS arrays plotted on a log-log scale against

the effective intra-tow porosity (x) (x = (1 — ¢,)/(1 — Ppax)-
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HS arrays are shown in Fig. 4. In this case a total of 149 data points were obtained, corresponding
to ¢; =0.115, 0.12, 0.125, 0.15, 0.20,0.3,0.35 and 0.40. ¢, is 0.50, 0.55, 0.6, 0.65, 0.70, 0.75, 0.8,
0.85, 0.9 and 0.95. The reader will notice that the number of data points at each level of (y) in
Figs. 3 and 4 is greater than the number of inter-tow porosities considered. This is because at each
level of intra-tow porosity the number of fibers (V) in the tow is also varied along with ¢,. In-
creasing Ny at a fixed Ry, and ¢, reduces Ry and consequently reduces the tow permeability. Even
though, as in Papathanasiou, 1997, the intrinsic permeabilities corresponding to the same ¢; and
same R; fall on approximately straight lines when plotted on a log-log scale against y, the fact that
the fiber radius (or tow permeability) is introduced as an additional parameter makes this not a
very useful way to generalize our results. Since the inter-tow packing is hexagonal in both cases
(Figs. 3 and 4), the differences in permeability observed between the two figures at the same level
of y and R; are solely due to the difference in intra-tow packing.

3.2. A dimensionless correlation

It was argued earlier that the overall permeability (X,) of a dual porosity system should be
affected by the flow through the inter- as well as through the intra-tow spaces. The latter is
related to the permeability of the tow itself (K,,) while the former will be related to the
permeability of a system with the same inter-tow porosity but made up of impermeable tows
(Ks). Earlier studies (Papathanasiou, 1997; Sadiq et al., 1995) investigated expressions of the
general form K, = f(Kiow, K;). We pursue the same line of inquiry in this work because of the
value of such a general correlation in design. The work of Ranganathan et al. (1996) suggests
that the appropriate power of K, in such a correlation is (3/2). To produce a dimensionless
group from the ratio K,/ (Kiow)™? it seems reasonable to multiply by K!/2. The dimensionless
group then becomes K,K!/?/ (Kiow) /2. Since in a dual porosity unit cell the ratio of the flow
through the inter-tow to that through the intra-tow space is related to (K;/Kiow), We express
K,K!?/ (Kiow) /2 as a polynomial of (K, /Kiow). A possible correlation will therefore be of the

form
K,K!/? K
K2 =/ Kiow ) ()

tow

In (4), Kiow and K can be calculated from the appropriate expressions (e.g. Gebart, 1992; Brus-
chke and Advani, 1993) and are therefore functions of ¢;, ¢, R, and Ry and of the type of packing,
all measurable physical quantities. Plotting the BEM results for (X,) as suggested by (4) results in
a curve characterized by two power-law regions in the limit of large and small (K;/Kioy). This
suggests

Ks Ks n Ks m K K1/2 ( Ks ) n < ﬁ ( Ks ) mn>
—a + or 23 _—g 1+= . 5
f (Ktow > <Kt0w > ﬁ <Ktow ) Kt30/w2 Ktow o Ktow ( )

Rearranging, we get

e (1))
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This is an empirical model with four adjustable parameters («, 8, n, m). This number can be re-
duced to two by observing that as (Ki.w/K;) approaches zero the permeability of the unit cell (K})
should approach (K5). In this case, the right-hand side of (6) becomes ((K)" " /(Kww)" ") p. For
this to equal K, it must be: m = 1.5 and = 1. Therefore, a possible correlation for (X,) will be

(Ks)n—OAS 1 Ks 1.5—-n Ks n—1.5
K= Ul ) )78k )
tow ow ow

or in terms of the dimensionless quantity ¥ = K,K!/? (Kiow)*?

K KO'S K. n 1 K. 1.5—-n
y=—"L — > 1+- :
Kl ¢ <me> ( " o (me> ®)

The asymptotes of (8) are: s
o for large (K;/Kiow), ¥ — (KK—‘) .

tow

This is a line of slope 1.5 on a log(Y) vs. log(K;/Kow) graph

e for small (Ks/KtOW): Y — o <1%

This is a line of slope (n) on a log(Y) vs. log(K;/Kiow) graph.
In terms of the “intrinsic permeability” Ki, =[(K,/K;) — 1] (8) can be expressed as

n—1.5
Ki,,zﬁ_l—a(Ks) , 9)

K S Ktow

which is a line of intercept (log(«)) and slope (n — 1.5) on a log(Kj,) vs. log(K;/Kiow) graph. In this
sense, the proposed correlation can be seen as a generalization of the correlation proposed in
Papathanasiou (1997):

1— Bld:)
Kn=2—1=a(4) (1 —%) (10)

in which «(¢;) and f(¢;) were determined by fitting a limited number of numerical results for (K})
corresponding to the square-square geometry. Based on a much more extensive set of compu-
tations for the more realistic hexagonal inter- and intra-tow structural arrangements, the present
study has resulted in a general model for Kj, for the more realistic case of hexagonal arrangement
of bundles and for both hexagonal and square intra-tow packings. The ability of the proposed
model (8) to fit the numerical data is investigated next.

3.3. Fitting the numerical results to (8)

Fig. 5 shows the results of Fig. 3 (HH array) plotted as suggested by (8). It can be seen that the
numerical data collapse on a curve described by (8) with « = 3 and n = 0.625. As anticipated, at
very high values of (K;/Kio) (that is, for a practically impermeable tow) the numerical data
approach an asymptote with a slope of 1.5 on the log-log graph. It should be noted that the values
for the parameters (n) and («) (in (8)) obtained by fitting the data of Fig. 3 are influenced by the
choice of the model used to calculate K and Ki,. Gebart’s model (Gebart, 1992), given by
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Fig. 5. Numerical results for the permeability (K,,) of HH arrays plotted on a log-log scale as suggested by Eq. (8).

2.5
_ 16 1_q')max_ 2
K=g > [1/ = 1] R (11)

has been used in this work. This is a well-tested model and simple to evaluate. In (11) (K) is the
dimensional permeability, (¢) is the porosity, R the fiber radius and ¢,,,, the porosity at maximum
packing. To calculate K we set ¢ = ¢; and R = Ry,,. To calculate K., we use R = Ry and ¢ = ¢,.
®max depends on the type of packing (it is ¢, = 1 — (1/2+/3) for hexagonal and ¢, = 1 — n/4
for square packing). It is known that (11) is strictly valid in the limit of low porosity (limit of validity
of the lubrication approximation). However, (11) has been found to be in reasonable agreement
with numerical calculations in single-fiber unit cells for a porosity up to 60%. Use of (11) for larger
porosities does not mean that this model is used in an inappropriate range of porosities. Instead, the
K and K, used in (8) should be seen simply as functions of ¢;, ¢, R, R, and of the type of packing
(expressed through the choice of ¢,,,,). Use of different expressions for K and K, will probably
affect the values of parameters (o) and (n) determined by fitting the data of Fig. 3 to (8). Alterna-
tively, one could use values for K; and K, obtained numerically from single-fiber unit cells at the
appropriate level of porosity and corresponding to R,y (for K) and Ry (for Kioy). In this work (11)
has been used for hexagonal fiber packing. For square packing it has been found that (11) is not in
good agreement with the numerical results for ¢ > 0.6. In this case, we use Eq. (11) for ¢ < 0.6,
while for ¢ > 0.6 we apply the model proposed by Bruschke and Advani (1993), which reads

K== <1n<m>—§+<1—¢>—@)zﬁ

The notation is as in (11). The results for the HS arrays are shown in Fig. 6. As anticipated, the
HS results also observe the same asymptote of slope 1.5 at high (K;/Ki,). The higher scatter




T.D. Papathanasiou | International Journal of Multiphase Flow 27 (2001) 1451-1461

10

10°

-

HEX-SQ Arrays, total of 149 data points

1459

2 POINTS: Numerical results
L SOLID LINE: Eqn.(8) fitted to data
L. DOTTED LINE: Asymptote of slope 1.5
n=0.59
- a=23
& 1(lJ“ 1(IJ‘ ‘ 1:)0 ; 1:)' : 1:32
(KS[KMW)

10°

Fig. 6. Numerical results for the permeability (K,) of HS arrays plotted on a log-log scale as suggested by Eq. (8).

observed in this case is probably due to the lower values of ¢; used and to the square packing of
the intra-tow fibers. At low levels of ¢;, small changes in the location of the fibers in the perimeter
of the tow tend to have a large influence on the flow resistance of the unit cell. Even though there
is a small difference in the least-squares fitting parameters (¢ = 2.3 and » = 0.59 in the HS case), it
is observed that the results for both types of unit cells fall roughly on the same curve when plotted

as suggested by (8). This is shown in Fig. 7, which, along with (7), suggests that the permeability of
hexagonal arrays of fiber bundles can be expressed as
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Fig. 7. Numerical results for the permeability (K,) of HH and HS arrays plotted on a log—log scale as suggested by Eq. (8).
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Ktow 0%
K,=K|1+2.67 .
=20 ()

S

(12)

K and K, are calculated from (11) and/or (12) as appropriate, when the porosity (¢), the type of
packing (use (11) except for square packing and ¢ > 0.6, in which case use (12); also use the
appropriate value of ¢,,,, in (11)) and characteristic lengths (R in (11) and (12)) are known for the
inter- and the intra-tow spaces.

4. Conclusion

We presented a computational analysis of Stokes flow across hexagonal arrays of fiber bundles.
Each bundle is made up of a number (up to 300) of individual filaments, arranged in either square
of hexagonal packing. This approach removes all uncertainties concerning the nature of the flow
within the tow or at the fluid-tow interface and allows us to consider explicitly the effect of tow
microstructure on the permeability. As a result of a large number of simulations and based on
earlier theoretical results we construct a master curve that describes the dependence of the per-
meability of a dual porosity fibrous medium on its inter- and intra-tow structures.
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